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Target problem on small-world networks
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In this work we focus on reactions on small-world netwo(B8VN's), disordered graphs of much recent
interest. We study the target problem, since it allows an exact solution on regular lattices. On SWN'’s we find
that the decay of the target®r which we extend the formalism to disordered lattidssagain related t&(n),
the mean number of distinct sites visitedhisteps, although th&(n) vs n dependence changes here drastically
in going from regular linear chains to their SWN.
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. INTRODUCTION S(n) in the presence of massiwiisorder such as is found
for SWN'’s.

Small-world networks(SWN's) are structures of much  As we will show in the following both analytically and
recent interesf1-6]. One may construct such structures by numerically, for random SWN’s the decay of the targets is
adding, in a random way, links to an ordered lattice; thestill related in a simple manner t§(n), although in going
usual way consists in assuming that links between any pairfom a linear chain to the corresponding SWN the depen-
of sites are equiprobablé.,4,5]. dence ofS on n changes fron~ yn to S~n.

In this way interesting structures arise, whose character- The paper is structured as follows: In Sec. Il we present
istic feature is that even at a very low density of additionalthe SWN. Furthermore, we derive the target decay for arbi-
links, the chemical distanceninimal distance between two trary networks, and reformulate the problem in order to com-
pointy drastically decreases from its original value on theply with the disordered nature of the SWN. In Sec. Il we
underlying regular lattice. Realizations of SWN’s range frompresent the results of our computer simulations for random-
social acquaintances to computer nets. Starting from a simpialks on SWN’s; we determine bot§(n) and the target
linear chain, SWN's are particularly interesting, because theglecay and compare the results with the analytical forms of
may be seen as a precursor for the formation of networks, &€¢- |l Section IV summarizes our conclusions.
subject of quite difficult treatment. Note that SWN'’s possess
inherent loops and therefore display other properties than
disordered treelike structures, such as hyperbranched poly-
mers[6,10].

The statical properties of SWN’s have attracted much in- A realization of the small-world networdSWN) we con-
terest. Also some studies have focused on SWNs’ dynamicalider is obtained by starting fromN sites on a ring, where
properties. These may be related in a chemical picture teach of the sites is connected by bonds to its two nearest
monomolecular reactions. In this work we focus on bimo-neighbors. Then we consider all paiisk) of sites, which
lecular reactions on SWN’s, by studying tlgerhaps sim- are not in nearest-neighbor position, and connect with prob-
plesh model, namely target annihilatigd1—-15. The model  ability 2p/(N—3) the corresponding sites with a new bond.
[11,17 supposes that there exist static target molec(des  In this way we add on the averag®l new bonds to the ring.
noted byT)7 random|y distributed on the lattice; tiés are This construction of the SWN does not delete bonds as in
annihilated by other moleculeghe A’s) that perform ran- Ref. [1]; it follows the procedure outlined in Reff2] and
dom walks on the lattice and destroy fhis at first encoun-  [4], which we found to be better suited for analytical ap-
ter. As is well-known in the literature, the target decay isProaches. Noting that the SWN's so obtained are undirected
different from trapping16—19, for which a general analyti- 9raphs, we introduce as usual the corresponding symmetric
cal solution in dimensions larger than 1 is not knof20];  connectivity matrixC, whose coefficient€; give the num-
for target annihilation the decay on regular lattices can béers of bonds connecting siteandk; the diagonal elements
given in analytical form, in which onlg(n), the mean num- ©of C are zero.
ber of distinct sites visited in steps, enterfl1,12. This is Let us recall some basic definitions concerning random
vastly different from trapping, which shows so-called Lifs- Walks (RW) on general graphs. This will help us to general-
chitz anomalieg19], such that in low-dimensional systems ize the target problerfil1,12 from RW on regulaf8,9,20
the decay depends not only &n) but on higher moments to random graph$21-23. A random walk on an arbitrary
of the number of distinct sites visitdd6—19. The question ~graph is constructed from the probabilities to jump from site
is now whether the target decay stays a simple function of to K,

II. SMALL-WORLD NETWORK AND THE TARGET
PROBLEM
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whereD;=Z;C;; ensures the normalization of the probabili- Hence the probability that the target at diteurvivesn time

ties; furthermore, in Eq(1) the matrixD is defined byD,; steps for a certain initial distributior; of walkers is given

= Di 5ki . by

Now W is a stochastic matrix, which defines a Markov

chain[21-24], namely, the random walk on the SWN. Note, _ B

however, that since the SWN has randomly distributed ¢k(n)_iﬂk [1=kiHi(m)], ©)

bonds, theD; are random; hence in genefa+ D, and thus

Wi #W,;. From Eq.(1) the probability of reaching im  and the distribution functior; is 1 if a walker is placed at

steps sitg starting from site is sitei for n=0 and 0 otherwise. Now it is straightforward to

o 5 perform the average over the quenched disorder of the

Pji= (Wi . 2 walker distributions, because the occupancy of each site is

Equation(2) gives rise to the generating function independent from the others:

—~ ~ * — Ki _ 1*Ki — R )
Pki(z)Ez‘o Z”Pki(n)=<r]§=:0 (zW)”) =[(1=2W)~ . <¢k(n)>_{xi=§6,1} igkq (=)~ “I[1—=kiHi(n)]
ki
3

PN o =11 2 a1 “[1-«Hy(n)]
Equation(3) is identical in structure to the expression valid i,i#k «=0,1
for regular latticeqd8,9]. In the same way it is possible to
define a generating functidfy;(z) through the probabilities =i1i;[k [1—qgH(n)]=®(n). (10

Fi(n) of reaching for the first time sitestarting fromi after

n steps. The basic relationship betwdg(n) andFi(n) is Henced,(n) in Eq. (10) is averaged over the initial place-

given by ment of the walkers and their motion. Howevdr,(n) de-
n pends on the particular SWN and on the sitef the target.
Pi(n)= 2 Fri(m)Py (n—m). (4) Note also that via Eq8) the decayd,(n) can be calculated
m=0

exactly, when thé=;(n) are known.
To analyze the decay given b$,(n) we consider the

o N .
Multiplying Eq. (4) by z" and summing oven leads to the expansion of Inb,(n) in powers ofq [L1]:

connection
- Pyi(2) — i = —qH;
£ (2)= @)~ O 5 Iny(n)= 3 In[1-qH(n)]
Pr(2)
between generating functions. One may note in all these ex- - _ 2 (qj/j) E [Hki(n)]j- (12)
pressions the explicit dependenceioiVe stop to note that =0 ik

Egs.(3) and(5) give an analytical expression in closed form
for F,i(z). ExpandingF;(z) in a series inz leads to the
Fi(n), which are fundamental quantities in the target decay
see Eqs(8)ff below.

From the relation

Taking only the first term in this expansion leads to an upper
bound of®,(n), since only terms of negative sign are dis-
carded. On the other hanld,;(n) is the probability of reach-
ing k starting fromi in n steps and therefore the inequality
Hyi(n)<1 always holds. Replacing powers bf,;(n) by

(WMHT=[(cD™H"T=(D'C)"=D~W"D (6)  Hyi(n) itself leads to a lower boundL1]. Putting these ex-

_ pressions together we are led to

one deduces with the help of Eg®) and (3) that Py;(2)

= (D, /D;)Pi(2), which in turn implies the property exp( S Hki(n)) gq)k(n)gexp( 43 Hki(n)),
~ ik ik
~ Pw(z) Di ~ 12
Fii(z) = T)kk mFik(Z) (7) 12

where y= —In(1—q). Note that for smallj, one has to first

of the generating functiof;(2). ordery=q, so that the bounds tend for smglko the same

Now we are placing with probabilitg walkers on the ©&Xact limit. . _
lattice sites and consider the decay behavior of resting targets -€t US turn now to the mean number of distinct sites
that are annihilated if a walker is visiting their sfte1,12.  i(n), visited by a random walker starting &fin n steps.
The probability that a walker starting iateaches the target at Conventionally(8,9] one takesS;(0)=1. Now, one has for
k during the firstn steps is disordered lattices:

Hki(n>=mE:1 Fri(m). (8) S(n=2> X Fki<m>+1=k%&i Hia(n)+1. (13

k,k#i m=1
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10° random walks on regular, infinite lattices of dimensiahs
F;’;%'.z)s >2.
, p=0.03 Hence in what dynamical properties are concerned, the
5(n>1° i p=0.01 SWN construction pushes here the “effective” dimension
p=0 from d=1 tod values larger than 2; in fact similar dynami-
102 L cal features have been observed in other con{é&x&.

We note that the linear dependenceSgh) on n for n
>1 holds for all values op>0, On the other hand, fgo
10' | =0 we recover exactly th&(n) ~n”2 long-time behavior of
1d lattices. Thus the problem is different, depending on
o | | ‘ | L whetherp=0 or p>0. A similar finding was observed for
T T T T T T, SWN concerning the quantit¢=(I)/N (with (I} being the
mean distance between site is found for p—0 to un-
FIG. 1. The mean numb&(n) of distinct sites visited im steps dergo a discontinuity in the thermodynamic limit which is
on SWN, plotted in double logarithmic scales. In these axes poweragjled the small-world transitiofi2,3,7]. Qualitatively we
law behaviorsS(n)~_n“ are directly visibl_e as straight_ lines of understand the transition f@>0 to S(n)~n by noticing
slopea. The underlying SWN belong to differept as indicated. ¢ in SWN the ¥ structure of the ring is interrupted on the
average every 1/(® sites by bifurcations. This topological
feature allows the walker to visit new regions on the ring.
Hence we haveégy = 1/p as a basic length scale of the
SWN[2]. For 1<n~p~ 2 the random walker explores a lin-
ear region of¢&e,~n"? and visits on the averag&(n)

In general S;(n) depends explicitly om; note that the sum in
Eq. (12) differs from the sums in Eq13) by the fact that in
Eqg. (13) one sums ovek. For regular lattices, of course, the
situation simplifies, since, fir&(n)=S(n) independent off,

and second, in Eq7) Py(2) andD, are alsck independent,  _ /iy new sites im steps. For &p~2<n the walker spends
from which Fy;(2)=Fi(2) and Hy(n)=H(n) follow;  around&3,,,=p 2 steps inside each linear segmes(n)
hence one can replace the sums in Et) simply by  —n and the mean number of long-range links the walker
S(n)—1. In the limit of smallg one recovers the former vyisits in n steps isnp?.

result for the target decay aegular lattices[11,12: Putting these aspects together we therefore assume that on

_ the SWNS(n) obeys a scaling law:
@ (n)=exp{—q[S(n) - 1]}=D(n). (14)

It should be emphasized that translational invariance is suf-

ficient but not necessary to imply E¢l4), since the inde- (we left nowa to be an adjustable parametesheref (x) is
pendence oy, and Dy of k also holds, for example, on 5 ynjversal scaling function with the limiting forms
deterministic Sierpinski gaskets. Having Ef4) as a good

S(n)=nY2f(n/£&,,0 =nY3 (np%) (15)

approximation for the target decay is extremely worthwhile, const forx<1

since, in generalS(n) is much easier to determine than f(x)~ (16)
®(n). On the other hand, Egl4) does not have to hold; the \/; for x>1.

complicated forms found in thigapping problem may serve

as clear-cut counter examplg6s—-19. The upper relation holds because for snmgl* most of the

walkers do not yet encounter any long-range links, so that

lll. NUMERICAL RESULTS AND COMPARISON the walks proceed along linear segments.
TO ANALYTICAL FORMS Plotting f(np®)=S(n,p)/\/n againstnp® we found out
(for n>1 andp<1) that in the range investigated we bring
To check the situation on SWN's, given that in generalour curves better into coincidence if we take in Ef5) «
Eq. (14) does not have to hold exactly for the target decay on=1.85 instead ofx=2. Figure 2 displays the best master
disordered graphs, we performed numerical simulations. Weurve behavior which we could achieve and shows that scal-
started by first investigating the behavior§n), the mean ing is correct. Evidently the number of decay curves in Fig.
number of distinct sites visited duringsteps of a walk on a 2 is limited; nonetheless, should our finding persist for much
SWN starting from sitd. We determineS(n)=(S;(n)) by larger lattices, it would be extremely interesting, since it
averaging over 500 random walks and afterwards over 10(kads to a nontrivial scaling exponedat
SWN realizations for each given probabiligy As underly- In Fig. 3 we present the decay laws for the targstdid
ing lattice we have chosen a ring of sile=50000. The lines). In the numerical simulations the walkers are placed
result for S(n) is displayed in Fig. 1 in double logarithmic randomly with probabilityqg=0.004 on a one-dimensional
scales. This display stresses the power-law regirgés) small-world lattice withN=50 000. All sites not occupied by
~n¢, for which the curves show up as straight lines of slopewalkers are viewed as targets. It turns out that a configura-
a. As is evident from the figure$(n) follows first a power tional average over 100 SWN realizations, over each of
law behavior,S(n)~n'?, typical for a 1d lattice. After an  which target annihilation is simulated 500 times, is sufficient
intermediate regimé&(n) turns to the behavior for large,  to lead to smooth decays. These are given in Fig. 3 through
for which we findS(n)~n. This dependence is typical for solid lines. Note that, based on the structure of the problem,
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FIG. 2. Replot of the data of Fig. 1 f@=0.01, 0.03, 0.05, and FIG. 3. Survival probabilitiesb(n) of the targets as a function
0.1 in the formS(n)/+v/n as a function ohp™®® in order to display ~ Of n, the number of steps. We display in double logarithmic axes
the scaling discussed in the text, E¢E5) and(16). The curves for ~ —10g10®(n) vsn for different SWN ensembles, whopevalues are
the smallerp begin more to the left. as given. The density of the walkersds=0.004. The solid lines

give the results of the simulations, and the dashed lines are the

e.g., Eq.(10), it is unnecessary to perform an additional con-aPProximate form forb(n); see text for details.

figurational average over the target pos!tlons. . S(n) and the decayb,(n), wherei(k) denotes the initial
We compare now the decaly(n) obtained numerically, position of the walkeitargel. To check in how far the ap-
with Eq. (14), computed forg=0.004, whereS(n) was de-  proximating form Eq.(14) stays very good we performed
termined as in the beginning of Sec. Ill. The resultsdqn) computer simulations dd(n) =(S;(n)), the mean number of
are given through dashed lines in Fig. 3. Comparing the twalistinct sites visited and ofb(n)=(®(n)) the survival
decays we find for short and intermediate times a very googrobability of the targets on the SWN.
agreement for all SWN considereg+0.005, 0.01, 0.02, In whatS(n) is concerned we find for SWN'’s that as soon
and 0.03. Only at largen does®(n) decay slower than as there appear long-range bonds, the lardeehavior of

d(n), a fact which we attribute in part to the large fluctua- S() changes fromm'to n. As a special aspeétiependence
tions of S,(n). Overall, however, we find a quite reasonable©n P) we find, furgr)zermore, tha(n) obeys a scaling law of
picture for the decay of the targets. the form S(n)fn f(np®); from our numencql investiga-
tions here we infer forr a value around 1.85. With respect to
the targets’ decay Ed14) reproduces at short and interme-
IV. CONCLUSIONS diate times the numerically determined behavior very

In this work we have studied the target problem Onclosely; marked deviations show up only at quite long times.

SWN’s. We have first determined analyticaligxtending

thus the formalism of Ref$11] and[12]) the changes which
the problem encounters when studying disordered lattices. We are thankful for many discussions with S. Jespersen
The important finding here was that the basic structure of then small-world networks. The support of the DFG, of the

equations stays the same as for regular lattices, but that the@F through Grant No. 10423-061.14, and of the Fonds der
appears an asymmetry in the sums involved in determinin@€hemischen Industrie are gratefully acknowledged.
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