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Target problem on small-world networks

F. Jasch* and A. Blumen†
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~Received 4 September 2000; published 21 March 2001!

In this work we focus on reactions on small-world networks~SWN’s!, disordered graphs of much recent
interest. We study the target problem, since it allows an exact solution on regular lattices. On SWN’s we find
that the decay of the targets~for which we extend the formalism to disordered lattices! is again related toS(n),
the mean number of distinct sites visited inn steps, although theS(n) vs n dependence changes here drastically
in going from regular linear chains to their SWN.
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I. INTRODUCTION

Small-world networks~SWN’s! are structures of much
recent interest@1–6#. One may construct such structures
adding, in a random way, links to an ordered lattice;
usual way consists in assuming that links between any p
of sites are equiprobable@1,4,5#.

In this way interesting structures arise, whose charac
istic feature is that even at a very low density of addition
links, the chemical distance~minimal distance between tw
points! drastically decreases from its original value on t
underlying regular lattice. Realizations of SWN’s range fro
social acquaintances to computer nets. Starting from a sim
linear chain, SWN’s are particularly interesting, because t
may be seen as a precursor for the formation of network
subject of quite difficult treatment. Note that SWN’s posse
inherent loops and therefore display other properties t
disordered treelike structures, such as hyperbranched p
mers@6,10#.

The statical properties of SWN’s have attracted much
terest. Also some studies have focused on SWNs’ dynam
properties. These may be related in a chemical picture
monomolecular reactions. In this work we focus on bim
lecular reactions on SWN’s, by studying the~perhaps sim-
plest! model, namely target annihilation@11–15#. The model
@11,12# supposes that there exist static target molecules~de-
noted byT), randomly distributed on the lattice; theT’s are
annihilated by other molecules~the A’s! that perform ran-
dom walks on the lattice and destroy theT’s at first encoun-
ter. As is well-known in the literature, the target decay
different from trapping@16–19#, for which a general analyti-
cal solution in dimensions larger than 1 is not known@20#;
for target annihilation the decay on regular lattices can
given in analytical form, in which onlyS(n), the mean num-
ber of distinct sites visited inn steps, enters@11,12#. This is
vastly different from trapping, which shows so-called Lif
chitz anomalies@19#, such that in low-dimensional system
the decay depends not only onS(n) but on higher moments
of the number of distinct sites visited@16–19#. The question
is now whether the target decay stays a simple function
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S(n) in the presence of massivedisorder, such as is found
for SWN’s.

As we will show in the following both analytically and
numerically, for random SWN’s the decay of the targets
still related in a simple manner toS(n), although in going
from a linear chain to the corresponding SWN the dep
dence ofS on n changes fromS;An to S;n.

The paper is structured as follows: In Sec. II we pres
the SWN. Furthermore, we derive the target decay for a
trary networks, and reformulate the problem in order to co
ply with the disordered nature of the SWN. In Sec. III w
present the results of our computer simulations for rando
walks on SWN’s; we determine bothS(n) and the target
decay and compare the results with the analytical forms
Sec. II. Section IV summarizes our conclusions.

II. SMALL-WORLD NETWORK AND THE TARGET
PROBLEM

A realization of the small-world network~SWN! we con-
sider is obtained by starting fromN sites on a ring, where
each of the sites is connected by bonds to its two nea
neighbors. Then we consider all pairs (i ,k) of sites, which
are not in nearest-neighbor position, and connect with pr
ability 2p/(N23) the corresponding sites with a new bon
In this way we add on the averagepN new bonds to the ring.
This construction of the SWN does not delete bonds as
Ref. @1#; it follows the procedure outlined in Refs.@2# and
@4#, which we found to be better suited for analytical a
proaches. Noting that the SWN’s so obtained are undirec
graphs, we introduce as usual the corresponding symm
connectivity matrixC, whose coefficientsCik give the num-
bers of bonds connecting sitesi andk; the diagonal elements
of C are zero.

Let us recall some basic definitions concerning rand
walks ~RW! on general graphs. This will help us to genera
ize the target problem@11,12# from RW on regular@8,9,20#
to random graphs@21–23#. A random walk on an arbitrary
graph is constructed from the probabilities to jump from s
i to k,

Wki5
Cki

Di
5~CDÀ1!ki , ~1!
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whereDi5( jCji ensures the normalization of the probabi
ties; furthermore, in Eq.~1! the matrixD is defined byDki
5Didki .

Now W is a stochastic matrix, which defines a Marko
chain@21–24#, namely, the random walk on the SWN. Not
however, that since the SWN has randomly distribu
bonds, theDi are random; hence in generalDiÞDk and thus
WikÞWki . From Eq. ~1! the probability of reaching inn
steps sitej starting from sitei is

Pji 5~Wn! j i . ~2!

Equation~2! gives rise to the generating function

P̃ki~z![ (
n50

`

znPki~n!5S (
n50

`

~zW!nD
ki

5@~12zW!21#ki .

~3!

Equation~3! is identical in structure to the expression va
for regular lattices@8,9#. In the same way it is possible t
define a generating functionF̃ki(z) through the probabilities
Fki(n) of reaching for the first time sitek starting fromi after
n steps. The basic relationship betweenPki(n) andFki(n) is
given by

Pki~n!5 (
m50

n

Fki~m!Pkk~n2m!. ~4!

Multiplying Eq. ~4! by zn and summing overn leads to the
connection

F̃ki~z!5
P̃ki~z!2dki

P̃kk~z!
~5!

between generating functions. One may note in all these
pressions the explicit dependence oni. We stop to note tha
Eqs.~3! and~5! give an analytical expression in closed for
for F̃ki(z). ExpandingF̃ki(z) in a series inz leads to the
Fki(n), which are fundamental quantities in the target dec
see Eqs.~8!ff below.

From the relation

~Wn!T5@~CDÀ1!n#T5~DÀ1C!n5DÀ1WnD ~6!

one deduces with the help of Eqs.~2! and ~3! that P̃ki(z)
5(Dk /Di) P̃ik(z), which in turn implies the property

F̃ki~z!5
P̃kk~z!

Dk

Di

P̃ii ~z!
F̃ ik~z! ~7!

of the generating functionF̃ki(z).
Now we are placing with probabilityq walkers on the

lattice sites and consider the decay behavior of resting tar
that are annihilated if a walker is visiting their site@11,12#.
The probability that a walker starting ati reaches the target a
k during the firstn steps is

Hki~n!5 (
m51

n

Fki~m!. ~8!
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Hence the probability that the target at sitek survivesn time
steps for a certain initial distributionk i of walkers is given
by

fk~n!5 )
i ,iÞk

@12k iHki~n!#, ~9!

and the distribution functionk i is 1 if a walker is placed at
site i for n50 and 0 otherwise. Now it is straightforward t
perform the average over the quenched disorder of
walker distributions, because the occupancy of each sit
independent from the others:

^fk~n!&5 (
$k i50,1%

)
i ,iÞk

qk i~12q!12k i@12k iHki~n!#

5 )
i ,iÞk

(
k50,1

qk~12q!12k@12kHki~n!#

5 )
i ,iÞk

@12qHki~n!#[Fk~n!. ~10!

HenceFk(n) in Eq. ~10! is averaged over the initial place
ment of the walkers and their motion. However,Fk(n) de-
pends on the particular SWN and on the sitek of the target.
Note also that via Eq.~8! the decayFk(n) can be calculated
exactly, when theFki(n) are known.

To analyze the decay given byFk(n) we consider the
expansion of lnFk(n) in powers ofq @11#:

ln Fk~n!5 (
i ,iÞk

ln@12qHik~n!#

52(
j 50

`

~qj / j ! (
i ,iÞk

@Hki~n!# j . ~11!

Taking only the first term in this expansion leads to an up
bound ofFk(n), since only terms of negative sign are di
carded. On the other hand,Hki(n) is the probability of reach-
ing k starting fromi in n steps and therefore the inequali
Hki(n),1 always holds. Replacing powers ofHki(n) by
Hki(n) itself leads to a lower bound@11#. Putting these ex-
pressions together we are led to

expS 2g (
i ,iÞk

Hki~n! D<Fk~n!<expS 2q (
i ,iÞk

Hki~n! D ,

~12!

whereg52 ln(12q). Note that for smallq, one has to first
orderg5q, so that the bounds tend for smallq to the same
exact limit.

Let us turn now to the mean number of distinct sit
Si(n), visited by a random walker starting ati in n steps.
Conventionally@8,9# one takesSi(0)51. Now, one has for
disordered lattices:

Si~n!5 (
k,kÞ i

(
m51

n

Fki~m!115 (
k,kÞ i

Hki~n!11. ~13!
8-2



e

r

su

ile
n

e

ra
o
W

10

c

p

r

the
on
i-

on
r

is

e
l
.
e
-

er

at on

hat

g

er
cal-
ig.
ch
it

ed
l

ra-
of
nt

ugh
em,

e
f

TARGET PROBLEM ON SMALL-WORLD NETWORKS PHYSICAL REVIEW E63 041108
In general,Si(n) depends explicitly oni; note that the sum in
Eq. ~12! differs from the sums in Eq.~13! by the fact that in
Eq. ~13! one sums overk. For regular lattices, of course, th
situation simplifies, since, firstSi(n)[S(n) independent ofi,
and second, in Eq.~7! P̃kk(z) andDk are alsok independent,
from which F̃ki(z)5F̃ ik(z) and Hki(n)5Hik(n) follow;
hence one can replace the sums in Eq.~12! simply by
S(n)21. In the limit of small q one recovers the forme
result for the target decay onregular lattices@11,12#:

F~n!.exp$2q@S~n!21#%[F̃~n!. ~14!

It should be emphasized that translational invariance is
ficient but not necessary to imply Eq.~14!, since the inde-
pendence ofPkk and Dk of k also holds, for example, on
deterministic Sierpinski gaskets. Having Eq.~14! as a good
approximation for the target decay is extremely worthwh
since, in general,S(n) is much easier to determine tha
F(n). On the other hand, Eq.~14! does not have to hold; th
complicated forms found in thetrappingproblem may serve
as clear-cut counter examples@16–19#.

III. NUMERICAL RESULTS AND COMPARISON
TO ANALYTICAL FORMS

To check the situation on SWN’s, given that in gene
Eq. ~14! does not have to hold exactly for the target decay
disordered graphs, we performed numerical simulations.
started by first investigating the behavior ofSi(n), the mean
number of distinct sites visited duringn steps of a walk on a
SWN starting from sitei. We determineS(n)[^Si(n)& by
averaging over 500 random walks and afterwards over
SWN realizations for each given probabilityp. As underly-
ing lattice we have chosen a ring of sizeN550 000. The
result for S(n) is displayed in Fig. 1 in double logarithmi
scales. This display stresses the power-law regimes,S(n)
;na, for which the curves show up as straight lines of slo
a. As is evident from the figure,S(n) follows first a power
law behavior,S(n);n1/2, typical for a 1d lattice. After an
intermediate regimeS(n) turns to the behavior for largen,
for which we findS(n);n. This dependence is typical fo

FIG. 1. The mean numberS(n) of distinct sites visited inn steps
on SWN, plotted in double logarithmic scales. In these axes pow
law behaviorsS(n);na are directly visible as straight lines o
slopea. The underlying SWN belong to differentp, as indicated.
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random walks on regular, infinite lattices of dimensionsd
.2.

Hence in what dynamical properties are concerned,
SWN construction pushes here the ‘‘effective’’ dimensi
from d51 to d values larger than 2; in fact similar dynam
cal features have been observed in other contexts@5,6#.

We note that the linear dependence ofS(n) on n for n
@1 holds for all values ofp.0, On the other hand, forp
50 we recover exactly theS(n);n1/2 long-time behavior of
1d lattices. Thus the problem is different, depending
whetherp50 or p.0. A similar finding was observed fo
SWN concerning the quantityL5^ l &/N ~with ^ l & being the
mean distance between sites!: L is found for p→0 to un-
dergo a discontinuity in the thermodynamic limit which
called the small-world transition@2,3,7#. Qualitatively we
understand the transition forp.0 to S(n);n by noticing
that in SWN the 1d structure of the ring is interrupted on th
average every 1/(2p) sites by bifurcations. This topologica
feature allows the walker to visit new regions on the ring

Hence we havejSWN51/p as a basic length scale of th
SWN @2#. For 1!n;p22 the random walker explores a lin
ear region ofj reg;n1/2 and visits on the averageS(n)
;An new sites inn steps. For 1!p22!n the walker spends
aroundjSWN

2 5p22 steps inside each linear segment;S(n)
;n and the mean number of long-range links the walk
visits in n steps isnp2.

Putting these aspects together we therefore assume th
the SWNS(n) obeys a scaling law:

S~n!5n1/2f ~n/jSWN
a !5n1/2f ~npa! ~15!

~we left nowa to be an adjustable parameter!, wheref (x) is
a universal scaling function with the limiting forms

f ~x!;H const for x!1

Ax for x@1.
~16!

The upper relation holds because for smallnpa most of the
walkers do not yet encounter any long-range links, so t
the walks proceed along linear segments.

Plotting f (npa)[S(n,p)/An againstnpa we found out
~for n@1 andp!1) that in the range investigated we brin
our curves better into coincidence if we take in Eq.~15! a
51.85 instead ofa52. Figure 2 displays the best mast
curve behavior which we could achieve and shows that s
ing is correct. Evidently the number of decay curves in F
2 is limited; nonetheless, should our finding persist for mu
larger lattices, it would be extremely interesting, since
leads to a nontrivial scaling exponenta.

In Fig. 3 we present the decay laws for the targets~solid
lines!. In the numerical simulations the walkers are plac
randomly with probabilityq50.004 on a one-dimensiona
small-world lattice withN550 000. All sites not occupied by
walkers are viewed as targets. It turns out that a configu
tional average over 100 SWN realizations, over each
which target annihilation is simulated 500 times, is sufficie
to lead to smooth decays. These are given in Fig. 3 thro
solid lines. Note that, based on the structure of the probl

r-
8-3
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F. JASCH AND A. BLUMEN PHYSICAL REVIEW E63 041108
e.g., Eq.~10!, it is unnecessary to perform an additional co
figurational average over the target positions.

We compare now the decayF(n) obtained numerically,
with Eq. ~14!, computed forq50.004, whereS(n) was de-

termined as in the beginning of Sec. III. The results forF̃(n)
are given through dashed lines in Fig. 3. Comparing the
decays we find for short and intermediate times a very g
agreement for all SWN considered (p50.005, 0.01, 0.02,
and 0.05!. Only at largen does F(n) decay slower than

F̃(n), a fact which we attribute in part to the large fluctu
tions of Si(n). Overall, however, we find a quite reasonab
picture for the decay of the targets.

IV. CONCLUSIONS

In this work we have studied the target problem
SWN’s. We have first determined analytically~extending
thus the formalism of Refs.@11# and@12#! the changes which
the problem encounters when studying disordered latti
The important finding here was that the basic structure of
equations stays the same as for regular lattices, but that t
appears an asymmetry in the sums involved in determin

FIG. 2. Replot of the data of Fig. 1 forp50.01, 0.03, 0.05, and
0.1 in the formS(n)/An as a function ofnp1.85, in order to display
the scaling discussed in the text, Eqs.~15! and~16!. The curves for
the smallerp begin more to the left.
y

na
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Si(n) and the decayFk(n), where i (k) denotes the initial
position of the walker~target!. To check in how far the ap-
proximating form Eq.~14! stays very good we performe
computer simulations ofS(n)5^Si(n)&, the mean number o
distinct sites visited and ofF(n)5^Fk(n)& the survival
probability of the targets on the SWN.

In whatS(n) is concerned we find for SWN’s that as soo
as there appear long-range bonds, the largen behavior of
S(n) changes fromn1/2 to n. As a special aspect~dependence
on p) we find, furthermore, thatS(n) obeys a scaling law of
the form S(n)5n1/2f (npa); from our numerical investiga-
tions here we infer fora a value around 1.85. With respect
the targets’ decay Eq.~14! reproduces at short and interm
diate times the numerically determined behavior ve
closely; marked deviations show up only at quite long tim
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FIG. 3. Survival probabilitiesF(n) of the targets as a function
of n, the number of steps. We display in double logarithmic ax
2 log10 F(n) vs n for different SWN ensembles, whosep values are
as given. The density of the walkers isq50.004. The solid lines
give the results of the simulations, and the dashed lines are
approximate form forF(n); see text for details.
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